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Abstract 

The concept of MDO structures (structures of 
maximum degree of order) is explained in detail and 
defined. This concept corresponds closely to the 
concepts of standard, simple or regular polytypes, it 
seems, however, to be more adequate for complicated 
examples. MDO polytypes consisting of equivalent OD 
layers are treated in detail. For the six subcategories, 
simple tests showing whether a given polytype is an 
MDO polytype or not are given, and stepwise 
procedures for obtaining a complete list of all MDO 
polytypes of a polytypic substance are introduced. The 
approach is demonstrated by examples. 

Introduction 

The determination of the structure of a polytype is 
usually more difficult than that of other crystalline 
bodies for a number of reasons: non-space-group 
systematic absences, symmetry enhancement and 
twinning may simulate a wrong space group and the 
latter even a multiple of the true unit cell. Therefore 
routine methods of structure determination may fail, 
even if single-crystal data are available. Besides, even 
the notion of a space group is problematic for 
disordered polytypes. 

The knowledge of a suitably selected subset of a set 
of possible polytypes of a substance has turned out to 
be useful for structure determination. Jagodzinski 
(1949) has classified the periodic polytypes of close- 
packed layer structures such as silicon carbide using 
the concepts Reichweite and Grenzfdlle. For quite a 
number of polytypic substances, certain polytypes have 
been singled out as simple (e.g. Tak+uchi & Nowacki, 
1964; Bailey, 1967, 1971). Zvyagin (1964, 1 9 6 7 ) -  
generalizing an earlier statement (Zvyagin, 1962) - 
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defines regular layer structures by the condition of 
uniformity. The concept of n-simple polytypes 
(Fichtner, 1980) is a generalization of the concept of 
regular polytypes, 1-simple corresponds to regular. 

Another condition, singling out so-called MDO 
structures or MDO polytypes has actually been 
formulated independently (Dornberger-Schiff & Grell- 
Niemann, 1961; Dornberger-Schiff, 1964). The letters 
M, D, O here stand for maximum degree of order (in 
German M, O, G corresponding to maximaler 
Ordnungsgrad). The MDO concept has been applied to 
a number of polytypic substances, such as SrVO a. 
4H20 (Sedlacek & Dornberger-Schiff, 1965a,b), 
sapphirine, aenigmatite and related minerals (Dorn- 
berger-Schiff & Merlino, 1974), ~Hg3S2C12 (I)urovi6, 
1968), YCI(OH)2 (Dornberger-Schiff & Klevtsova, 
1967), K4Mo(CN)sNO (Svedung & Vannerberg, 
1968), WOEC12 (Backhaus, 1979), CuC204.nH20 
(Schmittler, 1968) and K4Si8018 (I)urovi6, 1974). 

For many substances, the set of MDO polytypes 
coincides with the set of simple or regular polytypes. 
Differences occur for more complicated examples, 
especially in category III (see below) and for polytypes 
consisting of more than one kind of OD layer. In these 
cases, the MDO concept seems to be more adequate 
than the other existing concepts. Behind the OD theory 
and the concept of MDO polytypes, there is the basic 
idea of decreasing interatomic forces with increasing 
distance, thus leading to a preference of polytypes with 
a minimum number of layer pairs (principle of OD 
structures) or even a minimum number of kinds of 
n-tuples of layers, for any number n (principle of MDO 
structures). 

OD theory is a geometrical approach to polytypism. 
The MDO concept presupposes a division of the 
structure into OD layers. For all polytypic structures 
which have come to my knowledge, the layers may be 
chosen in such a way that the conditions for OD 
structures are fulfilled, and thus the results of OD 
theory may be applied. How the choice of OD layers 
© 1982 International Union of Crystallography 
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may be performed has been sketched recently (Dorn- 
berger-Schiff, 1980) and will be worked out in detail in 
a forthcoming paper. In the following, we suppose that 
the polytypes under consideration consist of one kind 
of OD layer. The notions OD structure and polytype are 
considered as synonyms. 

A family of OD structures (Dornberger-Schiff, 1964, 
1966; Dornberger-Schiff & Fichtner, 1972) is defined 
as the set of structures consisting of the same kind(s) of 
layer(s) and the same kind(s) of layer pair(s). The 
symmetry of any kind of layer and any kind of layer 
pair occurring in the structure is described by an OD 
groupoid family. A family of OD structures may be 
called a family of polytypes, if all polytypes with OD 
structures belonging to this family are taken into 
account, no matter whether ordered or disordered, 
whether occurring or only possibly occurring in nature. 

In this paper, a general way is given of how to derive 
from the OD groupoid family, to which a polytypic 
substance may be referred, all possible MDO poly- 
types of this substance. The question how, in general, to 
recognize MDO polytypes has been answered by 
13urovi6 (private communication), but is also dealt 
with in this paper. Firstly, a generally applicable 
definition of MDO polytypes is given. Paper I of this 
series then is concerned with polytypes containing OD 
layers all of the same kind, and based on the results of 
paper I polytypes containing OD layers of more than 
one kind are treated in paper II (Dornberger-Schiff & 
Grell, 1982). 

Definition of MDO polytypes 

In accordance with the definition of MDO structures 
(Dornberger-Schiff & Grell-Niemann, 1961; Dorn- 
berger-Schiff, 1964, 1966; Fichtner, 1965), MDO 
polytypes are defined as follows: a polytype n o is called 
an MDO polytype, if the following conditions apply. 

MDO(i) For the chosen layers, the polytype is in 
keeping with the definition of an OD structure, i.e. the 
so-called vicinity condition applies. 

MDO(ii) Amongst the whole family of polytypes, 
there is no polytype n I in which the kinds of n-tuples of 
consecutive layers for some numbers n constitute only a 
selection of the kinds of n-tuples contained in n 0. 

For recognition and deduction of MDO polytypes a 
more convenient form of this definition is necessary. 
The suitable tools are developed in the following 
paragraphs. 

Characterization of categories by sequences 

OD theory is based on considerations of geometrical 
equivalence of layers and layer pairs to be brought 
about by coincidence operations. These coincidence 
operations are classified into those leaving layers and 

layer pairs upside up, to be called r operations, and 
those turning them upside down, to be called p 
operations. 

By presence and/or absence of r and p operations for 
layers and layer pairs the categories and subcategories 
may be characterized and distinguished. For a charac- 
terization of these features the following conventions 
are made: A layer which is converted into itself by a p 
operation (i.e. is non-polar with respect to the direction 
of missing periodicity) is in the following to be 
indicated by the symmetric letter A; a layer for which 
no such operation exists (i.e. the layer is polar with 
respect to the direction of missing periodicity) is to be 
indicated by a letter b or d, where layers related by r (p) 
operations are indicated by the same (different) letter. 
Non-specified layers are denoted by the letter L. 

A sequence of layers may then be characterized by a 
sequence of such letters. Subscripts may be used to 
number the layers in the order of their occurrence in the 
polytype. In paper II superscripts are used to distinguish 
between layers of different kinds. 

According to the vicinity condition (VC) (Dorn- 
berger-Schiff & Grell-Niemann, 1961: Dornberger- 
Schiff, 1964, 1966, 1979: Dornberger-Schiff & 
Fichtner, 1972), there are only three kinds of sequences 
of letters for families of OD structures containing 
equivalent layers and four kinds for families containing 
more than one kind of layer (Fichtner, 1977: Grell & 
Dornberger-Schiff, 1982). The kinds of sequences 
correspond to the respective categories: category I is 
represented by a sequence of letters A ; category II by a 
sequence of letters b (or, if the layers are otherwise 
indicated, by a sequence of letters d); category III by a 
sequence of letters b and d alternating (compare 
columns 1 to 4 of Table 1). 

Further classification of categories I and III into 
subcategories and their characterization by sequences 

The classification of the families of OD structures into 
subcategories refers to polarity or non-polarity of layer 
pairs with respect to the direction of missing periodicity. 
Obviously, any layer pair of category II represented by 
b b (or d d) is polar and no further indication is needed 
in this case. With respect to polarity or non-polarity of 
layer pairs of this category no further subdivision is 
possible. 

Two equivalent non-polar layers indicated by A are 
related by at least one p operation and so are polar 
layers b and d, and also d and b. This does not mean, 
however, that the resulting pairs of layers are 
necessarily non-polar. Non-polar layers forming non- 
polar layer pairs are shown schematically in Fig. 1 (a): 
A 1 is transformed into A 2 by the same centre of 
symmetry transforming A 2 into A 1 as do the 21 axes in 
the b direction. Non-polar layers forming polar layer 
pairs are shown schematically in Figs. 2(a), (b) and (c). 
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There is no p operation transforming A ~ into A 2 and A 2 
into A r  The twofold screw axis parallel to a trans- 
forming A~ into A 2 does not transform A2 into A~ and 
the same is the case with the n-glide perpendicular to c. 
Indication of polarity of a layer pair (if not obvious as 
in the case of b b) is given by small arrows above or 
below the pair of letters representing the layer pair, with 
absence of such an arrow indicating that the pair is 
non-polar. In this way, characteristic sequences of 
letters with and without arrows for any of the 
subcategories result (columns 5 to 8 of Table 1). A 
simple small line, so to speak an arrow without an 
arrow head, is used to indicate that the layer pair is 
polar without specifying the sense of polarity. 

Character izat ion of MDO poly types  by  M D O  
seqt~ences 

letters and arrows, if any. Sequences of n letters and 
arrows, if any, are to be called n-sequences for short. 
We call such sequences r equivalent in analogy to the r 
equivalence of the layer n-tuples represented by them. 
Layer n-tuples which are p equivalent are represented 

a 
i i  

, . .  

i 
Co ~ :~ 

I 

, ~ 7  orientation + . ~  orientation - 

The sequences represent ing:MDO structures require 
obviously further specifications. All polytypes, that 
means also MDO polytypes of families belonging to 
subcategory Ia, or IIIa or to category II, are represen- 
ted by the same sequence, respectively. Polytypes 
belonging to families of the other subcategories may 
differ in the sense of polarity of their layer pairs as 
indicated in Table 1 column 8 by arrows without arrow 
heads. 

Two n-tuples of layers which are r equivalent are 
obviously represented by the same two sequences of n 

co] 

A ~ A A 

Y ½+Y --y ½-y 
(a) 
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_ 

n 
• { 

i 

(b) 
Fig. 1. Schematic representation of the symmetry and stacking in 

two MDO polytypes of OD groupoid family (1), projected along 
b. 
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Fig. 2. Schematic representation of the symmetry and stacking in 
(a), (b) two MDO polytypes and (c) a periodic polytype of OD 
groupoid family (2), projected along b. 
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Table 1. Characterization of  categories, subcategories and MDO polytypes 

1 2 3 4 5 6 7 8 9 10 

Layer pair characterized by 
Layer 

characterized Layers letter 
by of a pair 

pair (and 
Category operation(s) letter linked by Subcategory operation(s) arrow) Sequence 

A t : r : A  2 Ia AtA2:p:A~A 2 AA AAAAA . . .  

I L~:p:L~ A and Ib A~A2:nop:A~A,  " A "A A "A A A-A 
A l : p : A z  

II L~ :no p : L I* b b ~ : r : b 2 p bb bbbbb . . . 

IIIa  b~d2 :p :bid2 bd 
d2b~ :p :d2b 3 db bdbdb. . .  

L ~ : n o p : L t  b b~:p:d 2 Illb bld2:n°p:bld2 b 'b b ' d  b-d  b . .  
III L z :no p :L,  d dz :p:b 3 d2b 3 :no p :d,b 3 d .b  " 

l l le b~d2:n°p:b~d2 b ' d  b "d b d b . . .  
d2b3:P:d2b 3 d b 

* L r: no p : L r means there does not exist a p operation transforming Lr into itself, and 

by p-equivalent n-sequences, i.e. one of these sequences 
is obtained from the other by reversing the sequence of 
letters and arrows, reversing also the sense of any 
arrow and interchanging the letters b and d. Thus, e.g. 
the 3-sequence b d~b is p equivalent to d'-b d. 

It may be shown that if an MDO polytype is 
represented by a sequence of letters (and arrows), then 
any two equivalent n-sequences represent equivalent 
layer n-tuples, where r-equivalent n-sequences corre- 
spond to r-equivalent layer n-tuples and an analogous 
statement holds for p equivalence. 

In most cases, indication of polarity and non-polarity 
of layers and layer pairs suffices for n-sequences to 
reflect this feature from layer n-tuples of MDO 
polytypes. There are, however, cases in which arrows 
indicating the relative polarity of triples or higher 
n-tuples are required to indicate that an n-tuple 
containing p equivalent parts is polar. An example of 
this kind may be constructed (Fig. 3): 

The OD groupoid family 

P 1 1 (4.) 1 1 

belongs to category Ia. The single layer is non-polar 
and so is a pair of adjacent layers, as the layers are 
related by a centre of symmetry,  but any triple of layers 
is polar and this is to be indicated by an arrow referring 
to a triple of layers, otherwise the one-to-one corre- 
spondence of n-sequences and layer n-tuples is violated. 

Such cases seem to be rare, they presuppose the 
existence of a symmetry operation of higher order than 
two in the layer group, and even for stackings of layers 
with such symmetry operations these seem to be 
exceptional cases. No polytypic substance belonging 
to such an exceptional case has actually been found so 
far. Exceptional cases would require special con- 
siderations, and they are not included in this paper. 

11 12 

MDO Sequence Additional 
Example sequence period condition 

1 A A A A A . . .  1 - 
A 'A "A "A "d ... 1 2 

A "A'A 'A'A ... 2 A~A,:P:A2A 3 

bbbbb. . .  I - 

3 bdbdb. . .  2 b~d2b3:p:d2b3d 4 

b "db  "d ,b . . .  2 

b ' d  b ' d  b . . .  2 

b "d b 'd  b ' d . . .  4 b~d2b3:P:d2b3d4 
b~d4b s :p :d4bsd 6 

a correspondiong statement holds for layer pairs. 

The connection between sequences of letters (and 
arrows) and MDO structures results in a condition for 
MDO sequences, similar to condition MDO(ii) for 
MDO polytypes: 

A sequence of letters (and arrows) is to be called an 
MDO sequence, if there is no n with the following 
property, a sequence may be constructed containing the 
same m-sequences with m < n but only a selection of n- 
sequences. 

From this condition the MDO sequences listed in 
column 10 (Table 1) result. (Note that there are only 
such sequences listed with notation of relative polarity 
of layers and layer pairs, the exceptional cases are not 
included here.) 

(a) 

ix 

A A ~  "-. 

(c) 

(b) 

AAA 

& 

4AAAA 

(4 
Fig. 3. Schematic representation of an exceptional case. (a), (b) 

Two layer triples A IA 2 A 3, where the position of A 3 in one triple 
is related to that in the other by the only r operation of A 2. 
namely the twofold axis. The p operation of A 2, the 4, converts, 
if applied to A 1 and A 3, one of the triples into the other, i.e. the 
triples are polar and are to be characterized by an arrow as 
indicated. (c), (d) MDO polytypes of OD groupoid family (4). (c) 
There is a total r operation Ax: r:A~+ r the 4 4. (d) There is only 
one kind of triple but two kinds of quadruples, no polytype exists 
containing only one of these two kinds of quadruples. The total r 
operation is in this case of the kind Ax:r:A.,~:,  the indicated 
translation. 
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The last paragraphs may now be summarized for 
conditions equivalent to conditions MDO(i) and 
MDO(ii). 

MDO(1) Any MDO polytype is represented by an 
MDO sequence; 

MDO(2) the same n-sequence occurring in different 
parts of a sequence representing an MDO polytype 
stands for r-equivalent n-tuples of layers, p-equivalent 
n-sequences stand for p-equivalent n-tuples of layers. 

As may be seen from column 10 of Table 1, the 
MDO sequences are periodic, this is indicated in 
column 11. MDO(2) requires that any two parts of an 
MDO structure which are represented by the same n 
sequences are r equivalent, therefore periodicity of 
sequences implies the existence of total r operations for 
MDO structures represented by the sequences. These 
total operations transform any layer into that which 
follows with period distance of the sequence. The period 
of the corresponding MDO structure may be a multiple 
of the sequence period, depending on the order of the 
corresponding point group of the r operation. For 
polytypes represented by one of the sequences with a 
hyphen in column 12 headed 'additional condition', the 
existence of such a r operation suffices to ensure its 
MDO character. For other polytypes additional con- 
ditions ensure the validity of condition MDO(2) with 
respect to p equivalence. 

For compiling complete lists of MDO polytypes, 
Table 2 is to be used. For any subcategory, steps are 
given leading from given layer pairs (or in category III 
from a given triple of layers) with the help of procedures 
finally to MDO polytypes. For subcategories Ib and 
IIIc two sorts of steps are given, namely those resulting 
in polytypes with letter sequence period m = 1 for 
category Ib and m = 2 for category IIIc and those with 

twice the respective period, i.e. m = 2 for subcategory 
Ib and m = 4 for subcategory IIIc. For deriving the 
complete set of all polytypes of a given family, the 
knowledge of all r and p operations converting an OD 
layer into itself and those converting an OD layer into 
an adjacent OD layer is necessary. The number of these 
operations is closely connected with the order G of the 
layer group.* For category I the number of r operations 
converting an OD layer into itself is equal to the 
number of p operations converting an OD layer into 
itself and therefore equal to G/2 = g. There are also g r 
operations as well as g p operations converting any A 
layer into an adjacent layer. 

For category II and category III there are only r 
operations in the layer group, the order G of the layer 
group is in these cases equal to g, the number of r 
operations. In category II there are only r operations 
converting a layer into an adjacent layer, whereas in 
category III this is done by p operations only. In both 
cases, the number of the respective operations is equal 
to g. In Table 2 the superscripts in brackets of 
coincidence operations are always referred to the 
number g as they denote g operations to be carried out 
one after the other. The superscripts of letters denoting 
layers refer to one given or one resulting position of the 
respective layer. 

Now some examples are given to show how to 
proceed with polytype families containing equivalent 
layers. Any OD groupoid family is indicated in the 
following by its symbol in accordance with the 
symbolism introduced earlier for families of OD 

* Str ict ly speak ing  the  f ac to r  g r o u p  m o d u l o  the  t r ans la t ions  m a  + 
nb (rn,n integers)  o f  the l ayer  g r o u p  is mean t ,  o the rwise  the o rder  o f  
the l ayer  g r o u p  is infinite. 

Table 2. Procedures for  compiling complete lists of  MDO polytypes. 

Resul t  Resul t  
S u b c a t e g o r y  Step Star t  P r o c e d u r e  ( in te rmedia te )  (final) 

A~:r(J):A2 ~ Ax:r~J):Ax+~ A A A . . .  
la 1 A A 

Ib 1 ( m =  1) A~'A A1:r~J):A2 ~ Ax:r(J):Ax+l A ~ A ~ A . . .  
1 ( m = 2 )  A~A A2:p(J):A2 .-. AI:p(J):A3 A ' A ' A  
2 ( m = 2 )  anyA~A-A  AI:r~J):A2 ,--, Ax:r(i):Ax+2 A ' A ' A ' A - A . . .  

II 1 b b bl:r~J):b2 *-* b~:r(J~:b~+~ b b b . . .  

I l ia  1 oneb  d b ~l~ d2:r~J):d2 .-, b~':r(#~:b~ j~ allb d b 
2 a n y b  d b d~b3:p(~)d~b~ ~ b~:p(~):d~ b d b d 
3 a n y b  d b d b~d~:r~):b3d4 ~ Lx:r(~):L~+~ b d b d . . .  

l l lb 1 (first part) o n e b ' b . b  ") d~:r(~:d~ ~ b[ ~ : r ~ : b ~  y) a l lb ' d .b  ~ 
1 (secondpart)  o n e b ' b . b  (~ b~:p(k):d~ 4--, d~:p(~):b~ ~) al lb 'd~b (~ 

b~d.b~d.b.  anyb  "b.b t b~ "r(J~:b3 '--' Lx:rlJ):L~+~ "" 
2 any b ' b b  ~ " b ' d_b 'd_b . .  • 

I l lc I o n e b ' d  b (tj d2:rlJ):d2 ~ b~):r¢J~:b~ j) all b ' d  b cj) 

. .  L ?! . . . .  any. U .  . . . . . . . . . . . . . . . . . . . . . . . .  .7. . . . . . . . . . . . . . . . . . . . . . .  : .  . . . . . . .  

2 ( m = 4 )  any b ' d  b d2b3:p(J):d2b3 ~ bl:p(i):d4 b ' d  b-d 
3 ( m = 4 )  a n y b ' d  b~d d 2 : r ( i ~ : d 4 ~  b3:r(J):b5 b ' d  b-d b 
4 ( m = 4 )  any b-'d b ' d  b d4bs:p~J):d4bs ~ b3:p~i):d, b~d b ' d  b"d 
5 (m = 4) any b ' d  b ' d  b-'d b3d4bsd6:p (i~:b3d4bSd6 ~ bld2:p(J~:bTd8 b~d b-d  b ' d  b ' d  
6 (m = 4) any b-'d b ' d  b "d b ' d  b~d2b3d 4 : r  ~j) :b3d4bsd6 ~ Lx: r (j) :Lx+ 4 b ' d  b ' d  b ' d  b-d . . .  
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structures containing layers all of the same kind 
(Dornberger-Schiff, 1964, 1966; Dornberger-Schiff & 
Fichtner, 1972). Any of these symbols gives the layer 
group of a single layer in its first line, and operations 
linking a layer into its successor, within curly brackets, 
in a second line, if all layer pairs are equivalent. If two 
kinds of layer pairs occur, the operations linking the 
pairs of either kind are given within two pairs of curly 
brackets, either both in the second line or in a second 
and a third line (see also Grell & Dornberger-Schiff, 
1982). Operations referring to a direction perpen- 
dicular to the direction of the translational vectors a, b 
common to the layers are given in round brackets. 
Translational components are given as subscripts of the 
corresponding symbols for the respective symmetry 
operations, where an n-fold screw with translational 
component t is symbolized by n,,.,, and a glide plane g 
with components k and l by g2k,21" 

Examples 

Example (1) 

The polytypes of the mineral spurrite Cas(SiO4) 2- 
CO 3 (Smith, Karle, Hauptmann & Karle, 1960), 
K4Mo(CN)sNO (Svedung & Vannerberg, 1968) and 
K4V(CN) 6 (Jagner, 1975) are to be described as 
belonging to an OD groupoid family denoted by 

P m a (b) 

{c2 n2,1/2 (nin, l)}. (1) 

The structures are to be considered as being built of 
layers all of the same kind. The layers are non-polar, 
i.e. they are to be indicated by the letter A and they are 
schematically represented in Figs. 1 (a) and (b) by strings 
of signs connected by a line and indicated by letters A 
with subscripts. The layer pairs are non-polar as 
indicated by the twofold screw and the centres of 
symmetry between A 1 and A 2 in Fig. l(a). The 
polytypes whose relevant coincidence operations are 
described by the OD groupoid family (1) belong 
therefore to subcategory Ia. From Table 1 it follows 
that the MDO structures of this category have a 
sequence period with one layer. That means there must 
exist a total r operation converting any layer into its 
successor. Such a r operation converts also A 1 into A 2. 
Corresponding to the order of the layer group of a 
single layer there are four r operations transforming A 
into A 2, namely a translation (indicated by e in Fig. la), 
an n glide perpendicular to b with component 1 in the e 
direction and ¼ in the a direction, a twofold screw in the 
e direction (Fig. l b) and a c glide perpendicular to a 
(Fig. lb). The first two r operations lead to the same 
position of A 3, if applied to A z as indicated in Fig. l(a). 

Any of these r operations leads, if it is made total by its 
continuations,* in signs 

A~:r:A2 ~Ax: r :Ax+~ ,  

to the same stacking of layers, which constitutes an 
MDO structure with basic-vectors a, b, e and space 
group P21/a (Fig. la). An analogous statement holds 
for the second two r operations, indicated in Fig. 1 (b). 
In this case an MDO structure results with basic 
vectors a, b, e = 2% and space group Pcab. As there 
are no other r operations transforming A~ into A 2 all 
MDO structures of OD groupoid family (1) are 
obtained. The general method for proceeding with 
structures of this subcategory is given in Table 2. The 
predominant way in which the OD layers in the 
po ly types  Ca5(SiO4)2CO 3 and K4Mo(CN)sNO are 
stacked corresponds to the monoclinic MDO structure 
P21/a with e = e 0 - a/4, polysynthetically twinned to a 
greater or lesser degree; in the case of K4V(CN) 6 the 
orthorhombic MDO structure with space group Pcab 
and e = 2% is predominant. 

Example (2) 

Decaborane (Kasper, Lucht & Harker, 1950) is a 
polytypic substance with the OD groupoid familyS" 

P 1 2/a (1) 

2v2 1 

nl.2 . (2) 

The decaborane molecules, have the site symmetry 2 
and thus lie on special positions of the layer group. 
They are represented in Figs. 2(a), (b), (c) by any two 
triangles sharing a corrier. The layers are indicated 
similarly to Fig. 1. They are also non-polar and 
therefore a letter A is given for them. Pairs of adjacent 
layers are polar, as there is no p operation trans- 
forming A 1 into A 2 and A 2 into A 1, therefore an arrow is 
given A ~'A 2 stating the sense of polarity for any other 
pair of layers occurring in an arbitrary stacking. The 
structures of (2) belong to category Ib and for them two 
types of MDO sequences are given in Table 1. The 
sequence period of one layer requires a total r operation 

A 1: r :A 2 .-. Ax: r:Ax+ r 

There are two r operations, the twofold screw and the 
glide plane indicated in Fig. 2(a), transforming A 1 into 
A 2. Their continuations to a total operation lead both to 
the same MDO structure as indicated in Fig. 2(a) with 
space group Pna21 and lattice parameters a, b, e = 2%. 
The second type of MDO sequences is of period two 
layers, with the additional condition A -~A 2: P : A'~A 3, i.e. 
the position of A 3 is given by a p operation trans- 

*That means the transformation characterizing the partial 
coincidence operation is applied to generate a whole structure. 

t With cyclic interchange of axes compared with the quoted 
paper. 
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forming A 2 into itself and A 1 into one possible position 
of A 3. There are two p operations of such a kind, as 
indicated in Fig. 2(b), a centre of symmetry and a 
twofold axis parallel to b. Both lead to the same 
position of A 3. A sequence period of two layers requires 
a r operation transforming A 1 into A 3, and its 
continuations to a total operation 

A 1 : v : A 3  '--'Ax: v:Ax+2 

lead to an MDO structure. The c glide perpendicular to 
b and the translation t = 1/2a + 2% lead to the same 
MDO structure as indicated in Fig. 2(b) with space 
group P2/a and e = 2 % -  a/2. The general way for 
deducing all MDO structures of this subcategory is 
given in Table 2. 

The OD structure as represented in Fig. 2(c) is not 
an MDO structure, although this OD structure has a 
space group P2/a with e = 4%. This may be proved in 
two ways: on the one hand, the sequence of letters and 
arrows indicated at the right of Fig. 2(c), representing 
the sequence of layers, is not an MDO sequence; on the 
other hand, there are two kinds of triples, whereas the 
OD structure shown in Fig. 2(a) contains triples of only 
one of these kinds and that of Fig. 2(b) contains triples 
of the other kind only. 

The crystals of decaborane examined by the quoted 
authors were disordered but contained extended regions 
of the MDO structure represented in Fig. 2(b). 

Example (3) 

~,-Hg3S2CI 2 (13urovi6, 1968) is a polytypic substance 
with the OD groupoid family 

C m m (2) 

{21/2 2 (avE)} 

{2VZ 2 (al/1) } (3) 

or 

C m m(2) 

{21,2 2 (al,9t I21,2 2 (al,~)}. 
Fig. 4(a) shows the two kinds of layer pairs. They are 
non-polar, therefore the structures of this family belong 
to category IIIa. From Table 1 it follows that there is 
only one type of MDO sequence with a sequence 
period of two layers and the additional condition 
b ld  2 b 3 : p : d  2 b 3 d 4. For deducing all MDO polytypes 
we proceed corresponding to Table 2. First, all triples 
bl d2 b3 are to be obtained. We start with one possible 
triple b 1 d2 bt ~) and apply all r operations of d2 to bt 1). 
Thus all positions h(s) i.e. all possible triples, are 

u 3 , 

obtained. For .any of the triples all p operations 
transforming d 2 into b 3 and b 3 into d 2 are to be applied 
to b,. In this way, bl is transformed into d 4 in a position 
so that the additional condition of Table 1 is fulfilled. 

For any of the quadruples thus obtained, any of the r 
operations transforming b i d  2 into b3d 4 are to be 
continued to total r operations 

bl d2:z':b3 d4 ,--, Lx: r: Lx+ 2. 

From this procedure all possible MDO polytypes are 

.%/ -~- -,q), . , ~  ~. 
o O o 0 o O 

O 

0 o 0 o 0 o 

A A 
+Y ½_+y 

(a) 

/ -  

co 

a 

¢3" 

0 o 0 o 0 

0 o 0 o 0 o 

(b) 

a 

C - - - - C  0 o 0 o 

"q,W V ",q,v V ~" 

(c) 

a 

i 

0 I I I 
! i I 
t , : v l . , q . v ~  

v Z . A . , .  A 
I I c ! 

(a9 

Fig. 4. Schematic representation of the symmetry and relative 
position of layers (a) in layer pairs, (b), (c) in two MDO 
polytypes, (d) in a periodic polytype of OD groupoid family (3), 
projected along b. 
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obtained, may be some of them more than once. The 
additional condition ensures the same result, if starting 
with a triple d 2 b 3 d 4. 

Figs. 4(b) and (c) show schematically the two MDO 
polytypes belonging to OD groupoid family (3). There 
are only two different positions of b 3 relative to the pair 
b~ d 2. One of these positions is obtained from the other 
by applying one of the r operations of d 2 to b 3 in a given 
position. Corresponding to the order of the layer group 
there are eight r operations, namely: (1) the identity, (2) 
m _1_ a, (3) m _k b, (4) 2 II c and from the C-centring 
follow (5) the translation a/2 + b/2, (6) b I a, (7) a / b 
and (8) an additional twofold axis parallel to %. The 
operations m _k a, b A_ a and both twofold axes change 
the position of by whereas the other r operations leave 
b 3 as it is. Therefore two kinds of triples and no more 
occur as represented in Figs. 4(b) and (c) by the layer 
triples b 1 d 2 b 3. For any of these triples the p operations 
transforming d2 into b 3 and b 3 into d 2 [they are centres 
of symmetry and twofold axes as indicated in Figs. 4(b) 
and (c)] lead to the same position of d4. For any of the 
two quadruples thus obtained the r operations trans- 
forming the pair b~ d 2 into the pair b 3 d 4 lead to one 
MDO polytype, if continued to total r operations: 

bl d2: r :b  a d4 ~ Lx: r: Lx+2, 

and that with space group F 2 / m  and lattice parameters 
a, b and c = 2% for the MDO polytype represented in 
Fig. 4(b), which may also be referred to space group 
C2/m with a, b and c = c 0 - a/2. 

The third polytype shown in Fig. 4(d) is not an 
MDO polytype, although there are total r operations 
transforming any layer L x into a layer Lx+ 2. These 
operations are the twofold screw parallel to c and the c 
glide perpendicular to a. There are two kinds of triples: 
one of the kind as shown in Fig. 4(b), the other of the 
kind as shown in Fig. 4(c). This rests on the fact that 
the position of d 4 does not satisfy the additional 
condition. 

The crystals of ?-HgS2C12 examined by 13urovi6 
(1968) were all disordered in various degrees, but all 
had extended regions corresponding to MDO poly- 
types; some corresponding to that of Fig. 4(b), others 
also to that of Fig. 4(c). 

The other categories and subcategories are to be 
tackled accordingly with the help of Tables 1 and 2. 

Summary and conclusions 

The effort seems to be fairly expensive as compared 
with the result of two MDO polytypes for any of the 
examples. And, indeed, no polytypic substance con- 
taining equivalent OD layers with more than three 
non-equivalent MDO polytypes has so far come to my 
knowledge. On the other hand, polytypic substances 
with M > 1 kinds of OD layers with a great number of 

non-equivalent MDO polytypes seem to be fairly 
frequent. The characterization and deduction of MDO 
polytypes for families with M > 1 are the subject of 
paper II of this series. 

The statements made in this paper have been proved, 
but some of the proofs are still rather clumsy and 
would, if included in this paper, have taken up too much 
space. This is why I decided to publish the content 
matter without any proofs, and postpone publication of 
the proofs until they have been brought into a better 
form, perhaps with the help of a qualified mathe- 
matician. Even without the proofs, the content matter 
summarized in Table 1 seemed worth publishing, as 
well as the way in which it may be used to solve the two 
problems treated: to test whether a given polytype is an 
MDO polytype or not, and to compile a complete list of 
all MDO polytypes of a given polytypic substance. 

My sincere thanks are due to my colleagues of the 
Abteilung Strukturforschung of our Institute as well as 
to Dr I)urovi6 (Institute for Inorganic Chemistry of the 
Slovac Academy of Sciences, Bratislava) for a great 
number of helpful discussions, in particular, however, to 
Mrs H. Grell of the Abteilung, who untiringly helped by 
her critical remarks and suggestions to produce a text 
which - I hope - will be understandable for the reader. 
I have also to thank Dr sc. K. Fichtner of our Abteilung 
for carefully reading the manuscript and for drawing 
my attention to a mistake. 

Note added inf inal  version: In the present version of 
this paper, remarks of Professor B. B. Zvyagin have 
been taken into account. Mrs H. Grell has completed 
the revision of the paper according to notes of Professor 
K. Dornberger-Schiff after her sudden death. 
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Abstract 

The condition for MDO polytypes formulated in paper 
I [Dornberger-Schiff (1982). Acta Cryst. A38, 483-  
491] is applied to OD structures containing OD layers 
of M > 1 kinds. Methods for ascertaining whether a 
certain polytype is an MDO polytype or not, and for 
deducing a complete list of MDO polytypes for any 
family of polytypes are given. These are applied to 
YCI(OH)2 and some MeX 2 polytype families. 

Introduction 

Amongst the polytypic substances whose structures 
turn out to be OD structures consisting of OD layers of 
more than one kind, there are some of great theoretical 

t Died 27 July 1981. 
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and practical importance, such as the various phyllo- 
silicates, pyroxenes, sulfides, selenides and others. 
Compilation of a complete list of MDO polytypes for 
such polytypic substances is of particular importance 
because this may lead to a recognition of the structure, 
even if no single crystals are available (see e.g. Weiss & 
13urovi6, 1980). 

The definition of MDO polytypes for polytypic 
substances has been given in paper I of this series 
(Dornberger-Schiff, 1982). This and other notions - 
such as v and p operations - described there will also be 
used here. As already mentioned, layers of different 
kinds are to be given different superscripts. Four 
different categories of families of OD structures have 
been distinguished (Dornberger-Schiff, 1964; Grell & 
Dornberger-Schiff, 1982; Grell, 1980), of which 
category II contains only polar layers, with equivalent 
layers related exclusively by v operations, so that no p 
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